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The dc charge current, field induced spin polarization, and spin textures are studied in the one-dimensional
gated superlattice with both fixed and varying Rashba and Dresselhaus contributions to spin-orbit coupling. It
is found that a spin component with zero mean value can demonstrate nonvanishing field induced spin texture
in a superlattice cell which can be probed experimentally, with the highest amplitudes achievable in an interval
of comparable Rashba and Dresselhaus terms. The consideration of the finite parameters for collision rate and
temperature is found to be nondestructive for the calculated current and spin characteristics depending on all
states below the Fermi level.
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I. INTRODUCTION

The spin polarization of charge carriers in nanostructures
is an important issue for both electronics and new field of
condensed-matter physics known as spintronics.1,2 One of
the problems being actively studied nowadays is the control
of spin �in general, magnetic moment� degrees of freedom
for the carriers participating in the electron transport, optical,
magnetization, etc., phenomena. The classical and approved
way to achieve this goal is the application of external mag-
netic fields which is successfully used both in fundamental
experiments and in commercial device structures. With all its
advantages the application of external magnetic field is not
always desirable for the technological purposes. Hence, al-
ternative methods of spin control are interesting for both
fundamental and applied issues. One of them is the consid-
eration of the spin-orbit �SO� coupling in those semiconduc-
tor nanostructures where it can produce measurable and po-
tentially usable effects. One type of the SO coupling in
heterostructures is the Rashba coupling3 coming from the
structure inversion asymmetry �SIA� of confining potential
and effective-mass difference. It is important for the experi-
mental purposes that the value of Rashba coupling strength
can be tuned by the external gate voltage4 and reaches the
value of 2�10−11 eV m in InAs-based structures5 with two-
dimensional electron gas �2DEG� which makes its influence
to be quite substantial. Furthermore, the Dresselhaus term6

originating due to the bulk inversion asymmetry �BIA� is
also present in the most commonly used types of heterostruc-
tures. The ratio between the Rashba term with strength � and
Dresselhaus term with strength � can be as small as � /�
=1.6 which was reported in the photocurrent experiments.7

Hence, it seems reasonable to include both Rashba and
Dresselhaus terms for more accurate description of the SO
coupling in these structures. The inclusion of both terms will
be further justified if one can find an effect which is sensitive
to the particular form of the SO coupling.

In the great variety of spin-dependent properties the prob-
lem of field induced carrier polarization which accompanies
the charge current flow is one of the central ones. Since the
pioneer work by Datta and Das8 on the concept of spin field-
effect transistor it attracts considerable attention, and one of

the key issues is the spin polarization induced by an external
electric field in the presence of the SO coupling.9–11 Apart
from the great variety of the results on the challenging prob-
lem of spin current, one can mention the calculations of spin
susceptibilities,12 the spin polarizations in a bar13–15 or in the
T-shaped conductor,16 the interplay between spin and Hall
charge current,17 the spin accumulation in a quantum wire
device,18 the pumping of charge current by spin dynamics,19

the dynamics of localized spins coupled to the conduction
electrons,20 the injected current-control21 and detection22 of
spin accumulation,23,24 the spin Gunn effect,25 and a recent
proposal of the spin current diode.26 Another important prob-
lem is a possible influence of random nanosize domains of
the SO coupling formed due to the imperfections of the
structure,27 which can give rise to the spatially nonuniform
character of SO terms leading to the electron-spin
precession28 and the effects referred to the field of spin
optics.29

One of possible ways to create a nonuniform spin distri-
bution in a heterostructure is to apply a metal-gated superlat-
tice with tunable amplitude of electric potential to the 2DEG
with the SO coupling. It was shown by Kleinert et al.23 that
in the presence of Rashba SO coupling the external electric
field yields an enhanced spin polarization in a superlattice
with a single spin-split band. In addition to the total polar-
ization of the sample, one can be interested in calculating the
local polarization �or spin density� at the point of a real space
which may be actually probed by a detector. It is known that
the states with inhomogeneous distribution of spin density
can exist and, which is important, can have long spin-
relaxation time.30 It was shown that such states can be found
in a one-dimensional �1D� superlattice with Rashba SO cou-
pling demonstrating a nonuniform distribution of spin den-
sity for a given state k, i.e., showing a spin texture.31 Of
course, under the equilibrium conditions the contributions to
the local spin density from all states below Fermi level can-
cel each other since the populations of the k and −k states
with the opposite spin projections in a system without mag-
netic order are equal. However, in the presence of symmetry
breakup during scattering32 or in a nonequilibrium condition
created by an external radiation,33 one can observe various
and controllable spin textures along the superlattice cell.
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Hence, it seems also promising to look at the spin polariza-
tions of the charge current and the spin textures created by an
external dc field applied to the superlattice.

In the present paper we study the dc, the spin polarization,
and the spin textures in the 1D gated superlattice with simul-
taneous presence of both Rashba and Dresselhaus SO terms.
The shape of spin textures is calculated as a function of the
applied electric field for fixed values of Rashba and Dressel-
haus SO amplitudes � and � and also as a function of � /�
ratio at fixed electric field and in the interval of � /� covering
a rather wide range of semiconductor materials. We consider
the finite parameters of collision rate and temperature which
appear to be nondestructive for the calculated current and
spin characteristics depending on all states below the Fermi
level. The knowledge of field induced spin textures in addi-
tion to the spin polarization and charge current may be in-
structive for both fundamental and applied issues of low-
dimensional semiconductor structures with strong SO
coupling. It will be seen that the principal results of the paper
regarding the generation of spin textures in a superlattice can
be obtained in a rather elementary model. In this model a
simple stationary kinetic equation is considered with a con-
stant relaxation time and all the calculations of the physical
quantities based on the knowledge of Bloch spinors and the
miniband spectrum while keeping in mind that a more gen-
eral formalism of spin-density matrix can also be applied for
more detailed studies.9–11

This paper is organized as follows. In Sec. II we briefly
describe quantum states and spin polarizations in the mini-
bands of a superlattice with Rashba and Dresselhaus SO cou-
pling. In Sec. III we write down the kinetic equation for the
distribution function in the presence of the dc electric field
and solve it numerically. The distribution function is used for
obtaining the charge current and the mean spin projections as
well as the spin textures. In Sec. IV we calculate and discuss
the spin textures for both fixed Rashba and Dresselhaus am-
plitudes and for varying � /� ratio. The concluding remarks
are given in Sec. V.

II. QUANTUM STATES IN SO SUPERLATTICE

In this section we shall briefly describe the quantum states
of 2DEG with Rashba and Dresselhaus SO coupling sub-
jected to a 1D periodic superlattice potential. A model in-
volving only the Rashba contribution to the SO coupling and
a superlattice potential has been derived previously31 and
applied to the problem of scattering32 and optical excitation
of spin textures.33 The Hamiltonian is the sum of the 2DEG
kinetic-energy operator in a single size quantization band
with effective mass m, the Rashba and Dresselhaus SO terms
with amplitudes � and �, respectively, and the periodic elec-
trostatic potential of the 1D superlattice:

Ĥ =
p̂2

2m
+ ���̂xp̂y − �̂yp̂x� + ���̂yp̂y − �̂xp̂x� + V�x� , �1�

where �=1 and the periodic potential is chosen in the sim-
plest form, V�x�=V0 cos 2�x /a, where a is the superlattice
period and the amplitude V0 can be tuned by the gate voltage.
The eigenstates of Hamiltonian �1� are two-component Bloch

spinors with eigenvalues labeled by the quasimomentum kx
in a one-dimensional Brillouin zone −� /a�kx�� /a, the
momentum component ky, and the miniband index m:

�mk = �
	n

a	n
m �k�

eiknr

�2
� 1

	ei
n
�, 	 = � 1. �2�

Here kn=k+nb= �kx+ 2�
a n ,ky� and 
n=arg��ky +�knx

− i��knx+�ky��. The energy spectrum of Hamiltonian �1�
consists of pairs of spin-split minibands. The spacing be-
tween two minibands in a pair is mainly determined by the
SO parameters � and �, while the miniband widths and the
gaps in the spectrum are on the order of the superlattice
potential amplitude V0. An example of the energy spectrum
is shown in Fig. 1 for the four lowest minibands in the InAs-
based 1D superlattice with Rashba parameter �=2
�10−11 eV m plus the Dresselhaus SO term with the ampli-
tude �=1.25�10−11 eV m. Here the ratio � /�=1.6 corre-
sponds to the one measured in the photocurrent experiments
on InAs-based structures.7 The cited experiments have
shown that the ratio � /� for the most widely used two-
dimensional �2D� structures varies from 1.5 for GaAs/
AlGaAs and 1.6 for InAs/InAlAs quantum wells to 7.6 in a
single GaAs/AlGaAs heterojunction. One can see from Table
I of Ref. 7 that none of the samples has shown a negligible
impact of the Dresselhaus term and hence this contribution
should be included in the SO part of the Hamiltonian. The
other parameters are the InAs electron effective mass m
=0.036m0, the superlattice period a=60 nm, and the ampli-
tude of the periodic potential V0=10 meV. It should be
noted that the spectrum in Fig. 1 is limited to the first Bril-

FIG. 1. �Color online� Energy spectrum of four lowest mini-
bands in the InAs 1D superlattice with Rashba SO term
�=2�10−11 eV m and the Dresselhaus term �=1.25
�10−11 eV m. The other parameters are the electron effective mass
m=0.036m0, the superlattice period and amplitude a=60 nm, and
V0=10 meV.
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louin zone of the superlattice in the kx direction, while the
cutoff in the ky direction is shown only to keep the limits
along kx and ky comparable. The minibands in Fig. 1 have an
inversion symmetry E�k�=E�−k� but they do not have an
additional symmetry with respect to the change kx,y→−kx,y if
both Rashba and Dresselhaus terms are present. This feature
is very important for the symmetry analysis of the present
structure as well as for the induced spin textures since the
absence of the additional symmetry plane perpendicular to
the y axis allows the generation of Sx and Sz components of
spin density for the x-oriented electric field, as we shall see
below in Sec. IV. Another argument for the consideration of
the lowest available symmetry of the SO term is the possible
influence of random nanosize domains of the SO coupling
which can be present due to the imperfections of the
structure.27

An external electric field changes the occupation distribu-
tion in the reciprocal space and thus it may produce noncom-
pensated impacts from states with different quasimomenta to
the local spin densities from the symmetrical points in k
space. Hence, it is instructive to take a look at the spin po-
larization described by a vector field (�x�k� ,�y�k�) in the
�kx ,ky� plane. Each of the mean spin projections is given by

�i�k� = 	�k
�̂i
�k� �3�

and is calculated for each miniband separately with a given
�k. The spin vector field is two dimensional since for both
Rashba and Dresselhaus terms the mean value of �z is zero.
We are interested in the topological structure of vector field
�3� in each miniband since it can provide a justified estima-
tion about the measurable local spin density which can be
induced by an external electric field.

In Fig. 2 the vector field (�x�k� ,�y�k�) is shown sche-
matically for two lowest superlattice minibands with the
same parameters as in Fig. 1 with both Rashba and Dressel-
haus SO terms. In can be seen from Figs. 1 and 2 that the
periodicity of the superlattice along x leads to the same prop-
erty in the k space for both energy and spins with the recip-
rocal lattice vector �2� /a ,0�. In each miniband the relation

�� �k� = − �� �− k� �4�

is satisfied, so in equilibrium at each point in the real
space the contribution �� �k� is compensated for by the term
−�� �−k�, leaving the sample nonmagnetic. If an external elec-
tric field is applied along x direction, relation �4� is no longer
satisfied, and one can find a nonzero spin accumulation at the
edges of the sample. In the next section we shall calculate
this quantity in the presence of the electric field oriented
parallel to the superlattice direction x for Rashba plus
Dresselhaus types of SO coupling.

III. CHARGE CURRENT AND MEAN SPIN VALUES

A. Kinetic equation for the distribution function

The field induced distribution of spin density and the
charge current can be calculated with the nonequilibrium sta-
tionary distribution function fm�k� in the miniband m which
depends only on the momentum if the stationary and uniform

external electric field Ex is applied along the x direction of
the superlattice. We shall neglect possible nonuniform char-
acter of the distribution function in a real space arising due to
the strong nonlinearity at high electric field and resulting to
the current and the charge domains of instability. Still, our
calculations will include the electric fields high enough to
see the nonlinear dependence of both the induced spin den-
sities and the current on the applied field strength.

In the collision frequency approximation the kinetic equa-
tion for fm�k� under the conditions described above has a
simple form,

eEx
� fm�k,Ex�

�kx
= − ��fm�k,Ex� − Fm�k�� , �5�

where � is the collision rate and Fm�k�=1 / (1+exp��Em�k�
−� /kBT) is the Fermi equilibrium distribution function in
the mth miniband. In the following we shall assume that T
=77 K and �=1012 s−1, which corresponds to the thermal
and collision broadenings of 6.6 and 3.9 meV, respectively.
The position of the Fermi level can be tuned by the gate
voltage and we assume EF=10 meV counted from the bot-
tom of the electron size quantization band. Such broadening
parameters are typical in the experiments and produce sig-
nificant smearing of the SO-split miniband structure shown

FIG. 2. Spin polarization �the origin of vector �� �k� is marked by
black circles� �a� in two lowest miniband and �b� in the next mini-
band of spectrum in Fig. 1 with the presence of both Rashba and
Dresselhaus SO coupling terms with the amplitude ratio
� /�=1.6.
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in Fig. 1. However, the charge current, the mean spin values,
and the local spin density are determined by the contribu-
tions from all occupied states which makes it survivable un-
der this scale of broadening. By substituting the dispersion
relation Em�k� obtained in the previous section for each
miniband, kinetic equation �5� can be solved directly for the
given strength of the electric field Ex, allowing one to find
the charge current and the spin density.

B. Mean charge current and spin

The application of an external electric field generates the
charge current through the superlattice. In the presence of the
electric field Ex applied along x, the charge current Jx�Ex�
and the mean spin values �i�Ex� can be calculated directly
after obtaining the distribution function from Eq. �5�:

Jx�Ex� = e�
m,k

	�mk
v̂x
�mk�fm�k,Ex� , �6�

�i�Ex� = �
m,k

	�mk
�̂i
�mk�fm�k,Ex� , �7�

where v̂i=�Ĥ /�ki, and the summation is performed over all
minibands m and all values of −� /a�kx�� /a and ky, re-
spectively. The results are shown in Fig. 3�a� for the charge
current and in Fig. 3�b� for the mean spin values. The current
in Fig. 3�a� is calculated for a 1�1 mm2 structure with
2DEG concentration n=1012 cm−2 and with all other param-
eters as for the band structures in Fig. 1. It can be seen from
Fig. 3�a� that the low-field Ohmic resistance of such struc-

ture is about 13 k�. Another well-known feature of the plots
in Fig. 3 is the progressive nonlinear dependence of the
maximum current and spin amplitude which can be seen at
high electric field �greater than 500 V/cm�. Such nonlinearity
is common for all field induced quantities in superlattices
and is significant when the Stark frequency �= 
e
Exa /� be-
comes comparable with the collision frequency �.

It is known that in the presence of Rashba SO term the
only nonvanishing component of the Ex electric-field induced
accumulated spin is �y.

23 In the presence of both Rashba and
Dresselhaus terms the �x component can also be nonzero, as
evident by looking onto the topology of the spin vector field
in Fig. 2. This topological aspect is confirmed by the calcu-
lations of mean spin value dependencies on the electric field
which are shown in Fig. 3�b�. One can see that �x and �y can
have an equal magnitude as long as the Dresselhaus term is
comparable to the Rashba term. Thus, the consideration of
both Rashba and Dresselhaus terms seems to be important
for the calculation of nonvanishing spin components mea-
sured experimentally. Another spin-related quantity that we
shall discuss below and which is actually measured in the
experiments is the local spin density in a real space deter-
mined by all states below the Fermi level. We shall see that
these spin densities can be spatially nonuniform in the pres-
ence of the superlattice potential.

IV. SPIN TEXTURES

Since the SO coupling is present, the spin polarization of
charge carriers may also take place, resulting in a spin accu-
mulation in a superlattice.23 The spin-related quantity which
can actually be probed by a tip in the experiment or possibly
utilized in a spintronic nanostructure device is the local spin
density in a real space, which manipulation is one of the
primary goals of spintronics. The local change in the spin
density is often referred to the conception of a spin current
which permanently attracts a considerable attention of
researchers12,24,34–36 �only few from a great number of pub-
lished papers on the spin current are cited here as an ex-
ample�, and where the different definitions have been pro-
posed. Taking into consideration the goals of the present
paper, one should mention that the experimental studies of
the spin current phenomena are presently focused on the ob-
servation of spin accumulation. Indeed, one can observe an
equal change in local spin density caused by two different
processes: the first one is the transport of spin-polarized
charge carriers, while the second one is the local “rotation”
of spins which is not always accompanied by the carrier
transfer. In both cases the actually measured observable is
the local spin density which change, as we see, does not
strictly require involving the conception of spin current. The
problem of the spin current definition remains to be one of
the hottest topics on spintronics since the work of Rashba,37

where the possibility of the existence of spin currents even in
the equilibrium has been demonstrated. The different possi-
bilities of local spin evolution are reflected also in the non-
conservation of the spin in terms of the continuity equation
�Si /�t+ �� ·Ji�=Ti. If the spin current density is defined as
Ji

j =Re��† 1
2 �v j ,�i��, then one has to introduce the torque

FIG. 3. �a� Charge current and �b� mean spin projections in-
duced by the electric field in the superlattice with Rashba plus
Dresselhaus SO terms. The current in �a� is calculated for a
1�1 mm2 structure with electron density n=1012 cm−2 and with
all other parameters as in Fig. 1.
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density Ti=Re[�† 1
i ��i ,H��] in the right side of the continu-

ity equation. It was shown that this equation takes the usual
form with zero in the right side if another definition Ji

j

= d
dt �x

j�i� of spin current is considered.35 The proper and uni-
form definition of spin current based on the measurable
quantities is still under discussion, and the goal of the present
paper is the local measurable spin density rather than the
spin current. Hence, below we shall focus on the electric-
field induced local spin density which is nonuniform in the
superlattice cell and thus can be referred to as the spin tex-
ture. It should be stressed that this texture accompanies the
charge current and thus provides the information about the
tunable spin polarization of the electrical current, which is of
big importance for possible device applications.

A. Fixed � Õ� and variable electric field

The Rashba and Dresselhaus SO terms in a Hamiltonian
of the free particle produce a spin polarization for the plane-
wave spinor �k with a given k which has a uniform spin-
density distribution in the real space. If an additional super-
lattice potential is applied, the spin density for �mk in the mth
miniband becomes nonuniform and forms the spin texture.31

In the equilibrium conditions the spin densities from all
states below EF cancel each other, which leads to zero spin
density in any point of the real space. If the equilibrium is
destroyed by an external electric field, one can expect to
measure not only the nonzero spin accumulation23 but also
the local spin density which varies along the superlattice cell
and forms variable spin textures which shape can be modi-
fied by manipulating the system parameters.

In this subsection we are interested in calculating the spin
density Si�x ,Ex� along the superlattice cell as a function of
the electric-field strength Ex. If the electric field is applied
along x, then the density depends only on x in the real space
since in the y direction the system is totally homogeneous.
After obtaining the distribution function from Eq. �5�, one
can write

Si�x,Ex� = �
m,k

��mk
† �̂i�mk�fm�k,Ex� , �8�

where the summation and integration are performed over all
minibands m and all values of −� /a�kx�� /a and ky, re-
spectively. The results can be presented in a form of a three-
dimensional �3D� plot showing each of the spin-density com-
ponents Si separately as a function of the position x inside the
superlattice cell and the electric-field strength Ex.

In Fig. 4 we show the field induced spin textures in a
2DEG for two limiting cases with �=0 and �=0 as well as
for the fixed Rashba-to-Dresselhaus ratio � /�=1.6, taking
all other system parameters as in Fig. 1. The plots in Fig. 4
and below in Fig. 5 show each component of spin �Sx�x� in
panel �a�, Sy�x� in panel �b�, and Sz�x� in panel �c�� separately
on the vertical axis calculated as a z= f�x ,y� function of the
position x in a superlattice cell �x axis� and of the applied
electric field �Ex axis in Fig. 4� or of the � /� ratio �� /� axis
in Fig. 5�. At zero electric field the structure is maintained in

the thermodynamic equilibrium with equal population of the
k and −k states in the reciprocal space having the opposite
spin projections. Thus, without the electric-field induced im-
balance of this population, the structure is not expected to
demonstrate nonzero spins in any point of the real space; i.e.,
the spin textures in our system have a nonequilibrium origin.

The most striking feature of spin textures in Fig. 4 is the
big amplitude difference of the field induced spin texture
components Sx and Sy for limiting cases �=0 and �=0 and
for a general case � /�=1.6, while the Sz amplitude is rather
unaffected by the � /� variations. The explanation of this
effect comes from the symmetry considerations as well as
from the analysis of the SO superlattice subband energy
spectrum which is presented schematically in Fig. 6. First of
all, it should be mentioned that in the superlattice with SO
coupling the energy subbands always come in pairs. Inside
each pair the dispersion surfaces are relatively weakly split
by the SO coupling �see Fig. 1� and their contributions to the

FIG. 4. �Color online� Electric-field dependence of spin texture,
�a� x component, �b� y component, and �c� z component shown in
one superlattice cell 0�x�a for the field interval 0�Ex�Emax.
The textures for two limiting cases with �=0 and �=0 as well as
for the fixed Rashba-to-Dresselhaus ratio � /�=1.6 corresponding
to InAs-based structure are shown. The temperature T=77 K, the
collision rate �=1012 s−1, and all other parameters are the same as
in Fig. 1.
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induced spin textures are in general of opposite signs �see
Fig. 2�. In order to illustrate this we plot in Fig. 6�a� a very
simple schematic view of mean spin alignment in the k space
for two SO-split superlattice subbands for pure Rashba �solid
arrows� and pure Dresselhaus �dashed arrows� SO couplings
whose energy spectra are symmetrical with respect to both
kx→−kx and ky→−ky transformations, leading to a high de-
gree of cancellation of the field induced spin textures from
the neighboring subbands. In Fig. 6�b� the same view is
shown for the presence of both Rashba and Dresselhaus
terms where the spectra are invariant only with respect to the
�kx ,ky�→ �−kx ,−ky� transformation, leading to the increasing
differences in the energy dispersion shapes and creating a
much smaller degree of cancellation from the neighboring
subbands, thus increasing the spin texture amplitude �see

Fig. 4�. The treatment of Sz component of spin textures can-
not be handled in the same way since its mean value for a
quantum state of our Hamiltonian is zero, meaning that the
condition

�
0

a

Sz�x�dx = 0 �9�

is always fulfilled. The local nonzero Sz�x� component is
formed by the effective magnetic field ���V�x� , p�� arising
due to the superlattice potential V�x�. Since this potential is
periodic, the mean value of its gradient is zero, which is
reflected in Eq. �9�. These general properties of the local
nonzero Sz�x� component are related only to the spatial de-
pendence of the superlattice potential and on the applied
electric field and thus they should not depend strongly on the
precise value of Rashba-to-Dresselhaus ratio as long as the
SO coupling is present. This expectation is consistent with
the plots for Sz�x� in Fig. 4�c�, where the textures for three
different sets of parameters are very close to each other.
Since the local spin density is an actually measurable quan-
tity in the experiments, the creation of field induced spin
textures in superlattices with both Rashba and Dresselhaus
SO terms should be taken into consideration for possible
experimental and device purposes.

FIG. 5. �Color online� The dependence on Rashba-to-
Dresselhaus parameter ratio � /� of the spin textures in the super-
lattice cell 0�x�a for �a� x component, �b� y component, and �c�
z component induced at fixed electric field Ex=50 V /cm. Point
“A” corresponds to the example of InAs-based structure with � /�
=1.6 considered above. All other parameters are the same as in
Figs. 4 and 1. The electric-field induced spin textures have the
biggest amplitudes in a region of comparable Rashba and Dressel-
haus contributions to spin-orbit coupling.

FIG. 6. �a� Schematic view of mean spin alignment for two
SO-split subbands for pure Rashba �solid arrows� and pure Dressel-
haus �dashed arrows� SO couplings whose energy spectra are sym-
metrical with respect to both kx→−kx and ky→−ky transformations,
leading to a high degree of cancellation of the spin textures from the
neighboring subbands induced by the electric field Ex. �b� The same
as �a� for the presence of both Rashba and Dresselhaus terms where
the spectra are invariant only with respect to the �kx ,ky�→ �−kx ,
−ky� transformation, leading to the increasing differences in the
energy dispersion shapes and creating a much smaller degree of
cancellation from the neighboring subbands, thus increasing the
spin texture amplitude �see Fig. 4�.
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B. Variable � Õ� and fixed electric field

Now we shall consider the dependence of spin texture
components on the ratio � /� of Rashba and Dresselhaus
contributions to the SO coupling when the electric-field
strength Ex=50 V /cm is fixed in a low-field regime of the
interval in Figs. 3 and 4, which is more desirable for practi-
cal purposes. The upper limit of � /� can be estimated from
the actual photocurrent experimental data7 where in different
structures constructed from different materials this ratio has
been reported to vary from 1.5 to 7.6. Taking this into con-
sideration, we shall restrict ourselves to the interval 0
�� /��8.0. Keeping all other parameters of the system un-
changed, we obtain the � /� dependencies of spin texture
components in a superlattice cell which are shown in Fig. 5.
Point A on the � /� axis corresponds to the example of InAs-
based structure with � /�=1.6 considered in the previous
parts of the paper, and the position of the vertical axis is
displaced for a better view.

First, let us examine the lower part of the interval when
� /��1, i.e., when the SO coupling is dominated by the
Dresselhaus term in a macroscopically symmetrical semicon-
ductor structure with significant BIA and negligible SIA.
One can see from Fig. 5 that the only significant component
of spin texture in this limit is Sz�x�, although it is always
several times smaller in amplitude than the maximum
achievable Sx�x� and Sy�x� components at various � /�. This
local component of field induced spin texture can be nonzero
since the structure has a microscopic BIA and is nonhomo-
geneous due to the presence of the superlattice. Nevertheless,
the mean value of the out-of-plane component Sz�x� is zero
for all values of � /� and Ex, i.e., condition �9� is always
fulfilled, as it can be checked numerically for the textures in
Figs. 4�c� and 5�c�.

Another important issue is the symmetry properties of the
induced polarization. The presence of purely Dresselhaus SO
coupling breaks the bulk inversion symmetry; i.e., the
r→−r element of symmetry is no longer present. For the
induced spin texture considered here the only component of
spin is Sz, i.e., S= �0,0 ,Sz�. Despite the existence of the C2
rotation axis parallel to the x direction, the application of this
rotation to the particular orientation of the induced spin
S(E�x�)= (0,0 ,Sz�Ex�) is equivalent to the inversion r→−r,
which is no longer present as a symmetry element due to the
Dresselhaus SO coupling. As for the pure Rashba coupling,
the same effect is produced by the breaking of the z→−z
symmetry by the SIA with the confinement potential U�z�
�U�−z�. Hence, the existence of the electric-field induced Sz
spin component here is consistent with the symmetry rela-
tions. It should be mentioned also that the existence of the
out-of-plane spin polarization induced by the in-plane elec-
tric field in a system with both Rashba and Dresselhaus SO
couplings is a well-known phenomenon in the context of the
spin Hall effect where the uniformly spaced spin currents of
Sz components have been predicted.38–42

We now consider the general case of nonzero Rashba and
Dresselhaus SO terms. As we move along the � /� axis, it
becomes clear that the maximum amplitudes for Sx�x� and

Sy�x� components are achieved when Rashba and Dressel-
haus terms become comparable in size, while the shape of
Sz�x� is only slightly modified. The Sx�x� and Sy�x� compo-
nents both have a nonzero mean value, which is in the agree-
ment of the calculated spin projections in Fig. 3 and is im-
portant in the scope of the practical issues of spin
accumulation. The presence of both Rashba and Dresselhaus
terms leads to the appearance of two nonzero components of
the accumulated spin instead of one �Sy only� when the SO
coupling is purely of Rashba type.23 It should be noted that a
high degree of spin polarization at equal strengths of Rashba
and Dresselhaus terms is in the agreement with the results of
numerous studies of transport and spin Hall phenomena in
such systems. Hence, the example of � /�=1.6 for InAs-
based structure which was studied above in detail is promis-
ing since the desirable spin properties in such system are
manifested on the highest achievable level.

Finally, let us consider the limit ��� when the Rashba
term dominates over the Dresselhaus term, although the lat-
ter is reported still to be nonzero in practically used
structures,7 and thus the symmetry of the system on the
whole � /� axis remains to be the same �except for one point
� /�=0�. Here one can observe a nonzero integral over Sy�x�
only, which is consistent with previous results on the Sy com-
ponent of spin accumulation in a system with pure Rashba
SO coupling.23 The Sx�x� component tends to vanish, while
the Sz�x� component has qualitatively the same form on the
whole � /� axis and zero mean value. We see that the shape
and the amplitude of Sz�x� are only weakly dependent on the
specific value of � /�, as it has been discussed in Sec. IV A.
One can see a change in the Sz�x� shape occurring at the
transmission trough the point �=� where the function Sz�x�
almost vanishes, which is in agreement with topological
properties of the spin structure. However, the major part of
experimentally studied nanostructures with SO coupling is
characterized by some intermediate ratio � /� which is far
away from any of the limiting value.7 We believe that further
theoretical and experimental studies of gated spin-orbit struc-
tures are promising since the strength of Rashba term can be
widely tuned by the gate voltage,4 and the generation of spin
textures presented in Figs. 4 and 5 with different ratios � /�
including the special ones seems to be experimentally acces-
sible.

V. CONCLUSIONS

We have studied the dc charge current, the spin polariza-
tion, and the spin textures in the 1D gated superlattice with
both fixed and varying Rashba and Dresselhaus SO coupling
terms and the spectrum consisting of multiple pairs of spin-
split minibands. We have seen how the presence of both
Dresselhaus and Rashba terms with varying ratio is reflected
in the SO-sensitive spin properties of the electron gas for
both mean spin values and spin textures. It was found that
the spin component with zero mean value can have nonvan-
ishing field induced spin texture in a superlattice cell which
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can be probed experimentally. It is shown that the consider-
ation of the finite parameters for collision rate and tempera-
ture is nondestructive for the calculated current and spin
characteristics depending on all states below the Fermi level.
The knowledge of field induced spin textures in addition to
the spin polarization and charge current may be instructive
for both fundamental and applied issues of low-dimensional
semiconductor structures with strong SO coupling.
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